Bedford Institute of Oceanography

L Halifa No Dalhou in

A. 2

Located in Halifax/Dartmouth, Nova Scotia Dalhousie University in same city

The Bedford Institute of Oceanography

Overview

Founded in 1962, BIO is Canada's largest centre for ocean research.

Occupants include:

- Fisheries and Oceans Canada DFO
- Geological Survey of Canada, Atlantic (Natural Resources Canada) GSC-Atlantic
- Canadian Coast Guard CCG
- Defence Research Development Canada DRDC
- Environment and Climate Change Canada ECCC

>700 employees engaged in research, technological development, policy, and management.

Research to provide advice and support to government decision-making

The Bedford Institute of Oceanography

DFO Science @ BIO

Maritimes Research and Monitoring Supports:

Fish population assessment
Sustainable aquaculture
Species recovery
Marine conservation
Impact assessment
Safe navigation and emergency response
Oceanographic forecasting and advice
Adaptation to changing ecosystems, including impacts of climate change

Modelling and Forecasting of Ocean Currents, Hydrography and Sea Level Changes

Youyu Lu

Bedford Institute of Oceanography Fisheries and Oceans Canada E-Mail: Youyu.Lu@dfo-mpo.gc.ca

Acknowledgement: Collaborators within Government & universities in Canada, France & China

Canada

Defence nationale

Outline

- What is ocean modeling & forecasting?
- State-of-the-art (example): Canada's operational ocean forecasting systems
- Modelling research: Sea level changes
- Practical applications: Examples

Numerical Ocean Modelling

Computers

Equations

 $\nabla \cdot \mathbf{u} = 0$

Ocean Foresting in Canada: Stream 1: Best Effort – mainly by universities

- -> C 🛛 Not secure 🛛 extrememarine.ocean.dal.ca/dalcoast/

DALHOUSIE COASTAL OCEAN FORECAST SYSTEM

MEOPAR: GoMSS

☆ |

University of British Columbia: Salish Sea Physics & Biogeochemistry

Present marine and atmospheric conditions.

Research results: salinity, temperature, and currents.

Research results: nitrate, diatoms, flagellates.

Ocean Forecasting in Canada: Stream 2: 24/7 support – CONCEPTS efforts

GIOPS: ¼°, DA, operational since Aug 2015; two versions: 30-day ensemble, 10-day determinist coupled to weather

Great Lakes: 2 km, coupled to weather, since 2014

Gulf of St Lawrence: 5 km, coupled to weather, since June 2011; updating to 500m

CIOPS-west: 1/36°, spectral nudging, operation by end 2018

RIOPS: 1/12°, DA, operation

CIOPS-east: 1/36°, under development

Down-scale to coastal harbors: Government of Canada - Ocean Protection Plan

Based on FVCOM

Based on NEMO

Saint John harbor NEMO: multi-level 1-way nesting

Main features of regional oceanography

Strong tides & Narrow channel

The Reversing Falls

River plume & Salt wedge

Tidal fronts: Relative vorticity of surface current - 2-way nested σ-coordinate test by J Chanut

TIME: 23-APR-2015 23:30

Model evaluation: Observational data

Tidal ellipses: obs (black) model (red) diff (blue)

2 m

3 m

5 m

Non-tidal water level: obs (black) model (red)

Non-tidal flow: obs (black) model (red)

Nov

Nov

12

6

CTD: obs (black) model (red)

Surface drifter trajectories

Modelling Research: Sea Level Changes

Regional Sea Level Rise

Processes Influencing Sea Level Changes

Remove global mean: Non-uniform Sea-Level Trend 1993-2004 (m/yr)

Inter-Annual Variation: RMS 1993-2004 (m)

Study based on high-resolution ocean model: Seasonal, intra-seasonal & inter-annual sea level variations on shelf off Canada's west coast

Mean Sea Level (2008-2016)

Altimeter obs

NEP36 Model

Seasonal Cycle of Sea Level

- Amplitude: difference between maximum & minimum of monthly climatology; Large spatial variations
- Phase: month when maximum occurs; Seasonal cycles on the shelf & off the shelf break are out of phase

Amplitudes of Seasonal Cycle

Numb		Tide	NEP3
er	Station Name	Gauge	6
1	Tofino	0.21	0.16
2	Bamfield	0.19	0.15
	Victoria		
3	Harbour	0.16	0.14
4	Patricia Bay	0.14	0.14
	New		
5	Westminster	0.61	0.13
6	Vancouver	0.14	0.11
7	Point Atkinson	0.13	0.11
8	Campbell River	0.15	0.14
9	Port Hardy	0.16	0.15
10	Bella Bella	0.17	0.14

- Good agreement between NEP36 and tide gauge observations
- **Difference tis feisy than 5 cm**08 0.06 12 Prince Rupert 0.16 0.13

Standard Deviations of Sea Level Anomaly

Altimeter obs

NEP36 model

Sea Level Anomaly at Tide Gauge Tofino

Correlation of Sea Level Anomaly @ Tofino with large scale

NEP36 model

Tofino – Seasonal Cycle

- Steric height can account for seasonal variations of sea level
- Halosteric height dominates seasonal cycle of total steric height

Tofino – Intra-seasonal & Inter-annual Variations

Regression analysis: Tofino halosteric height vs wind stress

Regression Analysis: Tofino thermosteric vs wind stress

Conclusions: on Sea Level Variations on Shelf off Canada's West Coast

- High-resolution model results agree well with tide gauge observations
- Intra-seasonal, seasonal & inter-annual variations: mainly steric & halo component
- **Regression analysis:**
- Wind outside NEP domain drives both halo & thermo steric, in particular at time scales < 1 year
- Heat flux & P-E outside NEP domain make smaller contribution but may become important at time scales > 1 year
- Implication to prediction remote winds are important!

Practical Applications: Search & Rescue, Military, Transportation, Industry

Practical Applications: Fishery Management, Marine Conservation,

Practical Applications: Environment Protection

Oil Spill

Tsunami debris drifting

Regional Projections: Sea Level Rise

2010-2100 SLR Under 3 scenarios:

- Low extrapolating tidal gauge obs
- Intermediate IPCC RCP8.5
- High RCP8.5 + Antarctic ice sheet contribution

Vertical land motion considered

Han et al. 2018

Canadian Extreme Water Level Adaptation Tool

2010-2050 & 2010-2100

Vertical allowances for RCP8.5 scenario

Vertical allowances: recommended changes in elevation of coastal infrastructure required to maintain current level of flooding risk in a future scenario of sea level rise.

http://www.bio.gc.ca/science/datadonnees/can-ewlat/index-en.php

Example: Atlantic Cod

Low NAO

High NAO

Northern waters cooler than average; lower number of species within latitudes

W70°

vears

NAO

Southern waters warmer than average; higher number of species

W50°

N35

High latitude; low species richness Mid latitude; medium species richness Low latitude; high species richness

NAO years

W70°

Southern waters cooler than average; lower number of species within latitudes

W50°

N35

Northern waters

mumber of species

warmer than

average; higher

within latitudes

High latitude; low species richness Mid latitude; medium species richness Low latitude; high species richness

Gulf of Maine & Scotian Shelf Operational Nowcasting/Forecasting

- **Developed & Maintained at Dalhousie University:**
- Initial development & validation (Katavouta et al. 2016, JPO)
- 2.5 km horizontal resolution with 50 vertical levels
- Forced with ECCC weather forecasts also with 2.5 km resolution
- Operational "nowcast" since Dec 7, 2016

Application: Southwest NS "Dead-Fish" Incident

December 2016, dead fish washed ashore attracting intense public attention and need to determine causes, e.g.

http://www.cbc.ca/news/canada/nova-scotia/dfo-update-dead-seacreatures-nova-scotia-digby-1.3916481

Nothing amiss in environment where scores of sea creatures washed up dead

Thousands of dead herring, starfish, lobster, crabs mysteriously washed up dead on some Nova Scotia beaches

By Cassie Williams, CBC News Posted: Dec 30, 2016 10:47 AM AT | Last Updated: Dec 30, 2016 3:53 PM AT

Output from GoMSS nowcast: daily SST Dec 7-30

Whole model domain

Time series of predicted SST off SW Nova Scotia where strong cooling occurred

A comparison of GoMSS daily SST with buoy observations in Halifax Harbour (where intense cooling did not occur)

6-hourly surface air temperature Dec 15-18

But: Is Dec 2016 unusual? Here is SST from a 6year GoMSS hindcast using US CFSR forcing

Is Dec 2016 unusual? Focus on Nov-Jan of 6 years

Application: Lobster mobility and catches related to sea bottom temperature?

- The Chronicle Herald, May 8, 2017:
- Lobster catches taking nose dive
- Some Nova Scotia fishers are wondering if they'll be able to break even this season

Modelled Bottom Temperature Anomaly in April

April Lobster Catch & Bottom Temperature

2015 April Lobster Catch

2016 April Lobster Catch

Summary

- Ocean modelling & forecasting have significantly advanced during past two decades: predicting realistic details of variations
- State-of-the-art modelling & forecasts requite planning, collaboration (national & international), investment on human resources & high performance computers
- Collaboration with meteorology is critical, and coupled prediction systems are emerging
- Numerous applications can be developed, for safe navigation, environment protection, ecosystem & fishery management, etc.

Questions and Discussions?